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Abstract

Introduction: Loss of entorhinal cortex (EC) layer II neurons represents the earliest

Alzheimer’s disease (AD) lesion in the brain. Research suggests differing functional

roles between two EC subregions, the anterolateral EC (aLEC) and the posteromedial

EC (pMEC).

Methods:We use joint label fusion to obtain aLEC and pMEC cortical thickness mea-

surements from serial magnetic resonance imaging scans of 775 ADNI-1 participants

(219 healthy; 380 mild cognitive impairment; 176 AD) and use linear mixed-effects

models to analyze longitudinal associations among cortical thickness, disease status,

and cognitivemeasures.

Results: Group status is reliably predicted by aLEC thickness, which also exhibits

greater associations with cognitive outcomes than does pMEC thickness. Change in

aLEC thickness is also associated with cerebrospinal fluid amyloid and tau levels.

Discussion: Thinning of aLEC is a sensitive structural biomarker that changes over

short durations in the course of AD and tracks disease severity—it is a strong candi-

date biomarker for detection of early AD.
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1 INTRODUCTION

Layer II of the entorhinal cortex (EC) is one of the earliest sites for the

accumulation of tangle pathology and neurodegeneration in the course

of Alzheimer’s disease (AD).1-3 Quantitative studies of neuron num-

bers in autopsy brains characterized for ADpathology have shown that

a substantial reduction in EC is observed by the time of dementia diag-

nosis and further progressive loss of ECneuronsoccurs over the course

of the disease.4-6 Little or no neuron loss occurs within EC in healthy

aged brains without AD pathology suggesting that EC neurodegenera-

tion is specific to disease.4

Histopathological data indicate that the transentorhinal region,

which consists of the anterolateral EC (aLEC) and perirhinal cortex, is

vulnerable in the early stages of AD (Braak stages I and II2). Recent evi-

dence has elucidated a functional subdivision in the EC whereby the

lateral and medial portions are involved in different aspects of infor-

mationprocessing7 andaredifferentially connectedwith theperirhinal

and parahippocampal cortices.8 Other work has shown that the aLEC

(which maps onto the lateral EC in rodents) is selectively vulnerable

to age-related alterations in processing9 as well as structural changes

associated with age-related cognitive decline10 in contrast to the pos-

teromedial portion (pMEC). While volume reductions in the EC inde-

pendently predict the likelihood of conversion from healthy aging to

amnestic mild cognitive impairment (MCI) and from MCI to AD,11-13

preceding andpredicting hippocampal volume reduction,14 it is unclear

whether these volumetric changes are primarily driven by the aLEC or

the pMEC.

Given the need for improved diagnostic biomarkers that are capa-

ble of detecting the earliest signs of neurodegeneration and thewealth

of evidence pointing to the EC as an early site of structural decline,

we seek to determine whether we can identify different trajectories

of structural thinning in the aLEC and pMEC in healthy, MCI, and AD

individuals.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI15) began

in 2003 with the goal of developing imaging, genetic, and pathological

biomarkers for early detection and longitudinal progression in AD.

This multisite imaging endeavor provides investigators with open

access to serial magnetic resonance imaging (MRI) scans from non-

demented individuals as well as MCI and AD patients, in conjunction

with other biomarker data such as cerebrospinal fluid (CSF) amyloid

and tau pathological markers. Measurements of cortical thickness

(CT) have recently emerged as potential candidates for biomarkers

due to their superior sensitivity to layer-specific cortical atrophy

compared to volumetric approaches and the availability of auto-

mated methods for estimation.16 In the ADNI sample, EC CT was

the most powerful measure of structural change both in MCI and

AD brains.17 EC thinning also preceded and predicted hippocam-

pal atrophy18 and predicted conversion to AD with the greatest

accuracy.19

For EC thinning to be a reliable and robust measurement that

accurately reflects neurodegeneration and supports longitudinal

tracking of disease progression, several common methodological

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using Pubmed. While there is substantial evidence that

the entorhinal cortex is the site of early tau pathology,

little is known about how components of the entorhi-

nal cortex (EC) longitudinally change in mild cogni-

tive impairment and Alzheimer’s disease (AD). Specifi-

cally, the anterolateral EC (aLEC) may be more vulnera-

ble than the posteromedial EC to age-related cognitive

decline.

2. Interpretation: Our findings suggest that aLEC thinning

is associatedwith cognitive decline aswell as amyloid and

tau pathologies.

3. Future directions: This work posits that aLEC thin-

ning is a potential biomarker for preclinical AD. Further

work will be needed to (1) determine aLEC’s utility as

an outcome measure for clinical trials, (2) develop and

refine cognitive assessments that are maximally sensi-

tive and specific to aLEC, (3) determine how aLEC thin-

ningmay contribute to subsequent decline, and (4) deter-

mine whether slowing this thinning can provide disease

modification.

limitations need to be addressed.20 These issues include reg-

istration bias and inverse consistency, bias due to asymmetric

interpolation favoring the baseline scan in longitudinal pipelines,21

and susceptibility to errors in segmentation or overestimation

of gray matter thickness without specified anatomical constrai-

nts.22

Here, we apply a novel pipeline that we recently developed for

longitudinal registration-based CT to quantify aLEC and pMEC thin-

ning that directly addresses these pitfalls and extend prior findings

that EC thickness reliably differentiates normal controls from MCI

patients and MCI patients from AD patients in the ADNI sample.

Using linear mixed-effects (LME) models, we quantify cross-sectional

and longitudinal associations between aLEC and pMEC thickness

and two cognitive outcomes, the Clinical Dementia Rating–Memory

box score (CDRM) and the Mini-Mental State Exam (MMSE), while

controlling for possible confounding variables including age, sex,

total brain volume and apolipoprotein E (APOE) ε4 genotype. We

supplement this analysis of cognitive outcomes by using further

LME models to establish diagnostic cohort specific trajectories in

aLEC and pMEC CT through time and receiver operating charac-

teristic (ROC) curves to ascertain predictive value of raw aLEC

and pMEC CT for diagnostic outcomes. In a secondary analysis,

we use an LME model to follow trajectories in aLEC and pMEC

CT through time for two subcohorts with differing CSF amyloid

profiles.
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2 MATERIALS AND METHODS

2.1 Raw imaging data and preprocessing

All T1-weighted MPRAGE MRI scans used in this study were drawn

from the publicly available ADNI. Exact parameters for the sequences

acquired are available on http://adni.loni.usc.edu. Due to limited con-

trast between EC regions and surrounding areas in T1-weighted

MRI, we use the multi-atlas joint label fusion methodology23 for

EC parcellation and subsequent thickness estimation based on com-

bined T1- and T2-weighted image information from a set of gold-

standard atlases (see below), permitting a more robust weighted

consensus approach than single-template and/or T1-weighted-only

alternatives.

2.2 Atlas data

We use a set of 17 atlases for multi-atlas joint label fusion comprising

T1/T2-weighted image pairs and corresponding segmentation labels

for the following left/right regions (aLEC, pMEC, perirhinal cortex,

parahippocampal cortex, DG/CA3, CA1, and subiculum). Manual atlas

labeling uses the T2-weighted image for each atlas set and a well-

established and validated protocol.9 Atlas labels for a single subject are

shown in Figure S1 in supporting information superimposedon the cor-

responding T2-weighted image. The scans used to compose the atlases

were collected on a Philips 3T scanner at the University of California,

Irvine. T1-weighted MPRAGE scans were acquired in the sagittal ori-

entation with an isotropic image resolution of 0.75 × 0.75 × 0.75mm3.

Image acquisition for the T2-weighted protocol was angled perpen-

dicular to the long axis of the hippocampus consistent with previous

work.24 T2-weighted image resolution is 0.47 × 0.47 × 2.0 mm3. The

optimal rigid transformationbetweeneach individual atlas’ T1- andT2-

weighted images was determined using the Advanced Normalization

Tools (ANTs) software package.25,26

2.3 Population-specific templates

To facilitate aLEC/pMEC thickness estimation for the ADNI cohort

describedbelow, twopopulation-specific, optimal shape/intensity tem-

plates were generated. The first T1-weighted template was con-

structed from 52 cognitively normal ADNI-1 subjects for a separate

ADNI-based investigation,27 and we opted to use it in this study

because it provides an intermediate registration space for transform-

ing the labels of the 17 atlases. The second T1-weighted template, the

“UCI” template, was generated from the 17 T1-weighted atlas images

discussed above.28 Representative slices for both templates are shown

in Figure S2 in supporting information. ANTs-based symmetric normal-

ization (SyN) was used to determine optimal diffeomorphic transfor-

mation between the two T1-weighted templates. This permits the two

T1-weighted templates to act as an intermediate geometric space for

the “pseudo-geodesic” mapping29 between a set of atlas labels and the

individual T1-weighted time point.

2.4 Individual time point processing

Processing was conducted using the recently developed ANTs lon-

gitudinal structural processing pipeline,27 which is an extension of

the previously reported cross-sectional framework.30 Briefly, the

T1-weighted images constituting the set of subject’s longitudinal data

were used to create a single-subject template (SST) as an unbiased

space for processing longitudinal time points of individual subjects.21

The SSTwas then processed through the cross-sectional pipeline using

the ADNI-1 template mentioned earlier. This processing produced

the SST auxiliary images (ie, n-tissue segmentation priors and brain

extraction mask prior) used for individual time point brain extrac-

tion and tissue segmentation into CSF, cortical gray matter, white

matter, deep gray matter, brain stem, and cerebellum. Output of this

processing stream includes the transforms between the individual

time point and the SST and the transforms between the SST and the

ADNI-1 template. In this way, concatenation of transforms can be

used to map each of the 17 atlas label sets to each individual time

point through a set of intermediary spaces which constitutes the

“pseudo-geodesic” transform. This strategy has the benefit of reducing

diffeomorphic distances between registration image pairs, reducing

computational costs in terms of the sheer number of registrations, and

taking advantage of the longitudinal nature of the data. This pseudo-

geodesic mapping strategy is illustrated in Figure S3 in supporting

information.

2.5 Multi-atlas joint label fusion

After mapping the set of 17 atlas label sets to each individual time

point, themulti-atlas joint label fusion23 approach is applied. This tech-

nique weights the contribution of each atlas while minimizing infor-

mational redundancy between the atlases. To estimate CT for each

EC region, we base our strategy on the MindBoggle approach31 but,

instead of using a mesh-based surface area calculation, we opt for the

more accurate Crofton’s formula,32 which estimates the surface area

directly.

2.6 Statistical analyses

Our primary interest is the linear association between cognitive per-

formance (CDRMandMMSE), diagnostic status (healthy,MCI, andAD)

and CT in the aLEC and pMEC. We seek to discern whether declining

cognitive performance tracks with deterioration of CT within the two

subregions.We also ask whether clinical diagnostic groups are separa-

ble when viewed through subregion CTs and their trajectories through

time.

http://adni.loni.usc.edu
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LME33 modeling allows us to leverage the longitudinal nature of

the ADNI repeated-measures design insofar as a correctly specified

LME model adjusts for within-subject correlation structure through

time. As an extension of themultiple linear regression framework, LME

modeling also supports adjustment for possible confounding variables

as well as inclusion of precision variables. For the primary analysis,

we use three LME models in total, each of which features subject-

specific random intercepts and slopes through time. We decide on the

inclusion of random components using the modified likelihood ratio

test.34

With the first two models we wish to understand cognitive perfor-

mance as a linear function of CT and its change through time. Both

of these models regress either CDRM or MMSE over aLEC or pMEC

CTs (and functions thereof) independently. We fit each model once for

aLEC thickness as predictor of interest and once for pMEC thickness

as predictor of interest because simultaneous inclusion of both mea-

sures results in multicollinearity on account of correlations between

subregional CT. The first model evaluates cognitive score as a func-

tion of baseline thickness and the interaction between baseline thick-

ness and months since baseline. The second model evaluates cognitive

score as a function of baseline thickness and loss of thickness through

time. We stratify the first two models by diagnostic cohort due to the

possibility of diagnosis-based non-linearities in associations through

time. Stratification decreases statistical power but increases model

robustness.

Another primary question is whether population CT averages and

their trajectories through time can be separated as a function of

healthy, MCI, and AD statuses. A third LME model (Model 3) inde-

pendently regresses aLEC or pMEC CTs over diagnostic status and

its interaction with months from baseline. We supplement Model 3’s

inferential analysis with ROC curves35 and area under these curves

(AUC) to demonstrate prediction of diagnostic statuses using aLEC or

pMECthicknesses alone.Wecompare theseAUCs to that of hippocam-

pal volume and use the nonparametric bootstrap to obtain confidence

intervals for the differences between AUCs.

Given positive results, we motivate future research by asking the

secondary question whether differential associations between CSF

amyloid levels and aLEC/pMEC CTs provides explanatory power for

primary analysis results. Based on prior work,36-39 Model 4 considers

the ratio between p-tau and amyloid beta (Aß) binarized at the thresh-

old 0.1 as predictor for CT in aLEC and pMEC subregions. All models

are outlined in Table 1. All modeling decisions were made prior to data

access.

We use the R programming language40 for all statistical analy-

ses. We use the nlme package41 for LME model fitting, the ggplot2

package42 for visualization, the plotROC package for generating ROC

curves,43 and the boot package for bootstrap confidence intervals. For

exploratory analyses,we: present a data tablewithmeans, proportions,

and standard deviations of outcomes and model covariates stratified

by diagnostic cohort; plot aLEC and pMEC thicknesses as a function of

subject age, stratifying by sex; and use nearest neighbor misclassifica-

tion as an index of homogeneity.

3 RESULTS

3.1 Data distributions

We provide descriptive statistics for outcomes, predictors, and other

covariates in Table 1 organized by diagnostic cohort. For each cohort,

means and standard deviations appear for continuous variables and

level-wise percent membership appears for factors.

For both baseline aLECandbaseline pMECCT, the controls have the

highest values, theADcohort has the least, and theMCI cohort is in the

middle. This trend holds for the longitudinal change in thickness. The

AD cohort has the largest percent loss per year, and the MCI cohort

has less percent loss per year. For both of these groups the %/yr loss

is less for pMEC than it is for aLEC. MMSE and CDRM also follow the

cohort-wise trends: baseline MMSE decreases from control cohort to

AD cohort and baseline CDRM rises. For both MCI and AD cohorts,

CDRM changesmore through time than doesMMSE.

Figure 1 shows a scatterplot of unadjusted CT and age across

sex and diagnostic cohort (healthy control and AD). Figures 1A and

C shows aLEC thickness in males and females, respectively, while

Figures 1B and D shows pMEC thickness in males and females, respec-

tively. Visibly, there is greater overlap between healthy and AD cohort

point cloudsas a functionofpMECthanasa functionof aLEC.Wequan-

tify this overlap using the nearest neighbor misclassification rate as a

homogeneity index. Regardless of sex, cohort clusters exhibit roughly

70% less homogeneity when viewed with aLEC thickness than with

pMEC thickness.

3.2 EC CT and cognitive performance

Models 1 and 2 regress cognitive performance over baseline and lon-

gitudinal CT. Figure 2A contains results from analyses based on Mod-

els 1 and 2. Green cells are nominally statistically significant at a

95% confidence level. Baseline CT and percent loss are standardized

within cohort to facilitate cross-cohort comparisons and comparisons

between the aLEC and the pMEC. In general, aLEC thickness is more

predictive of outcome than is pMEC thickness. Across both outcomes

(MMSE and CDRM), aLEC thickness has eight significant associations

with outcome, whereas pMEC only has three significant associations.

In 9 of 12 of the comparisons shown in the table effect sizes are larger

for aLEC thickness.

Figure 2 also illustrates Model 2 results but, to facilitate compar-

isons across CDRM and MMSE and aLEC and pMEC thicknesses, axes

are standardized. MCI cohort results are shown in Figure 2B; AD

cohort results are shown in Figure 2C. We flipped the sign of MMSE

so that lower scores reflect better testing performance for both cog-

nitive measures. In general, regression coefficients reflecting the asso-

ciations between CDRM or MMSE and aLEC (orange) thickness (and

changes thereof) are more significantly non-zero than those of pMEC

(blue) thickness. The scaled coefficients of aLEC are uniformly higher

than pMEC except for the case of MMSE as a function of % loss CT for
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TABLE 1 Outcomes, predictors, and confounding variables

Control [219] MCI [380] AD [176]

Baseline aLEC (mm) 2.19 (0.14) 2.11 (0.20) 1.97 (0.19)

Loss aLEC (%/year) 0.07 (2.59) 1.14 (3.08) 1.34 (4.04)

Baseline pMEC (mm) 1.89 (0.13) 1.85 (0.15) 1.77 (0.16)

Loss pMEC (%/year) 0.14 (2.20) 0.52 (2.40) 0.69 (3.04)

BaselineMMSE 28.00 (1.58) 23.46 (4.89) 22.50 (3.61)

LossMMSE (%/year) 0.04 (4.79) 2.65 (10.16) 10.06 (17.49)

Baseline CDRM 0.25 (0.35) 0.88 (0.85) 0.17 (0.76)

Gain CDRM (%/year) N/A 17.12 (53.48) 25.00 (55.54)

Brain volume (CM3) 1467.21 (138.56) 1499.66 (147.61) 1453.63 (162.10)

Baseline age (years) 75.97 (5.06) 74.93 (7.14) 75.01 (7.63)

APOE (%with (0, 1, 2)∈4 alleles) (74, 24, 2) (47, 42, 12) (33, 48, 19)

Male (%) 54 64 52

Notes: Continuous variables present asmean (standard deviation). For each continuous variable, we show cohortmeans and standard deviations. For factors,

we show the percentage of the cohort in each level. Baseline variables are shown with their natural scale, whereas change in these variables is shown using

percentages to facilitate comparison across variables.

Abbreviations: aLEC, anterior lateral entorhinal cortex thickness; APOE, apolipoprotein 1; CDRM, Clinical Dementia Rating-Memory Score; MMSE, Mini-

Mental State Exam Score; pMEC, posterior medial entorhinal cortex thickness.

the AD cohort. For the MCI cohort, both lower baseline aLEC thick-

ness and greater % loss aLEC CT predict worse CDRM and MMSE

scores.

Overall, these results indicate that aLEC CT, both at baseline

and longitudinally, is more predictive of clinically relevant cognitive

changes than pMEC CT. Given the known pathological and neurode-

generative trajectory in the medial temporal lobes, this result is con-

sistent with prior literature and suggests that within the EC, regionally

specific cortical thinning measures can be used as a biomarker for cog-

nitive decline.

3.3 EC CT and clinical diagnosis

Model 3 regresses CT over cohortmembership and its interactionwith

time. In general, estimated effect sizes for aLEC as a function of cohort

membership and time are twice those for pMEC. Nonetheless, all lin-

ear associations are nominally statistically significant at the 95% confi-

dence level, that is, none of the intervals contain zero.

The top row of Figure 3 illustrates these results as a function of

months from baseline. aLEC thickness is regressed over cohort mem-

bership and months in Figure 3A; pMEC thickness is regressed over

the same in Figure 3B. The three cohorts exhibit greater separation at

baseline when viewed through aLEC thickness than they exhibit when

viewed through pMEC thickness. Estimated aLEC thickness 95% con-

fidence bands maintain complete separation among cohorts through-

out time,whereas estimatedpMECthickness95%confidencebandsdo

not.

Figure 4 supplements these inferential results with ROC curves to

measure predictive content of raw aLEC and pMEC CTs with respect

to MCI (Figure 4A) and AD (Figure 4B) status. The aLEC curves are

consistently above the pMEC curves and yield higher AUCs, signi-

fying greater predictive content at every threshold of the contin-

uous CT values. Both aLEC and pMEC AUCs outperform those of

subject age (MCI 0.47; AD 0.48) and total brain volume (MCI 0.47;

AD 0.57).

3.4 EC CT and CSF AD pathology

Given the stronger associations between aLEC CT and clinical out-

comes than between pMEC thickness and the same, we ask whether

a stronger link between aLEC thickness and CSF AD pathology lev-

els exists than between pMEC thickness and the same. This secondary

analysis provides a basis for future research into physiological mecha-

nisms underlying aLECCT and its clinical effects.

We look at the longitudinal progressions of aLEC and pMEC thick-

nesses as a function of the binary threshold given by the ratio of phos-

phorylated tau-181 (p-tau) to Aß being > 0.1.36-39 These CSF data

are available for a smaller 238 subject (70 healthy; 119 MCI; 49 AD)

subset of the data used in the primary analyses. Due to dearth of

repeated measures for CSF levels, we consider only the first CSF mea-

surement for each individual and only include CT, CDRM, and MMSE

data collected during visits occurring after this CSFmeasurement with

1-month grace period. Proportions of the ratio of p-tau to Aß that are

> 0.1 are 0.9 for the healthy cohort, 0.97 for the MCI cohort, and 1

for the AD cohort. We refer to these subjects as being “p-tau/Aß ratio-

positive” or “amyloid ratio-positive.”

We model the linear associations between subregion CTs and ratio

positivity and its interaction with time from baseline (as measured

by time of CSF measurement). The bottom row of Figure 3 presents

the estimated linear cross-sectional (Figure 3C) and longitudinal
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F IGURE 1 Scatterplots featuring anterolateral and posteromedial (anterolateral entorhinal cortex [aLEC] and posteromedial entorhinal
cortex [pMEC]) cortical thickness (CT) and age stratified by sex and diagnostic cohort. aLEC thickness in males (A) and females (C) exhibits
moderately less overlap between cohorts than does pMEC thickness in males (B) and females (D).We quantify overlap between healthy and
Alzheimer’s disease (AD) cohorts using nearest neighbormisclassification rate as homogeneity index. For the same comparisons between healthy
andmild cognitive impairment cohorts the homogeneity indices read 0.39, 0.43, 0.43, 0.44 from top-left to bottom-right

(Figure 3D) associations along with 95% confidence intervals.

Cross-sectionally, we estimate that the population of individuals

with amyloid ratio positivity has 0.11 mm less aLEC CT than does

the population of individuals who are amyloid ratio negative. For

perspective, 0.11 mm is more than the difference between baseline

aLEC thicknessmeans of healthy control andMCI cohorts presented in

Table 1.

Longitudinally, we estimate that the amyloid ratio-positive sample

of individuals experiences an additional loss of 0.025 mm aLEC CT per

year compared to the loss experienced by the amyloid ratio-negative

sample. The additional loss in aLEC CT experienced by the amyloid

ratio-positive sample requires 4 years before the difference between

healthy and MCI cohorts is spanned. Due to the smaller sample size

in this analysis, the results require further research and should be

regarded as preliminary.

3.5 Benchmarking against hippocampal volume

Finally, to ensure that the predictive validity for MCI and AD status

from aLEC CT offers additional information above and beyond hip-

pocampal volume, a well-validated and highly usedMRI biomarker, we

compared ROC curves for the two structural measures. In Figure S4

in supporting information, total hippocampal volume ties aLEC CT in

predicting MCI status with an AUC of 0.69. For prediction of AD sta-

tus, total hippocampal volume markedly underperforms aLEC CT with

an AUC of 0.64 compared to the 0.73 reported above. Overall, these

results indicate that relative to hippocampal volume, raw aLEC thick-

ness is a better predictor ofAD status and is at least as good a predictor

of MCI status. Future research may consider combining aLEC CT with

other predictors within a machine learning algorithm to better predict

AD onset.



HOLBROOK ET AL. 7 of 11

F IGURE 2 Estimated linear associations and nominal 95% confidence intervals between anterolateral and posteromedial entorhinal
(anterolateral entorhinal cortex [aLEC] and posteromedial entorhinal cortex [pMEC]) cortical thicknesses (CT) andMini-Mental State Exam Score
(MMSE) or clinical dementia rating-memory score (CDRM). A, For Alzheimer’s disease (AD) andmild cognitive impairment (MCI) cohorts, the first
row contains cross-sectional associations with baseline thickness (CT0) whereas the second and third lines contain longitudinal associations. The
first, second, and fifth rows belong toModel 1; the third and sixth rows belong toModel 2. Cells for which intervals do not contain zero are green.
B–C,Model 2’s adjusted linear associations between CDRMorMMSE and aLEC or pMEC baseline thicknesses and percent change in thickness
from baseline. Baseline CT, percent gain CT,MMSE, and CDRMare standardized. MMSE is negated since high performance is a higher score for
MMSE but lower for CDRM. Associations are stronger for aLECCT than for pMECCT for bothMCI (B) and AD (C), exhibiting point estimates of
greater scale as well as fewer confidence intervals overlapping zero

4 DISCUSSION

Given thewealth of research implicating the transentorhinal region,1-3

selective vulnerability of the aLEC to age-related alterations in

processing9 and structural changes associated with age-related cog-

nitive decline,10 we hypothesized that aLEC structure, specifically CT,

might provide a suitable biomarker for early AD detection. We imple-

mented a novel longitudinal CT pipeline on structural MRI data col-

lected from the ADNI-1 cohort and compared this data with MMSE

andCDRMperformance, diagnostic cohortmembership, andCSF amy-

loid levels. Initial homogeneity analyses showed less overlap between

healthy control andADcohorts as a functionof aLECCT than for pMEC

CT.We used LMEmodels to analyze linear associations between these

quantities through time while controlling for within-subject correla-

tions and confounders such as age, sex, brain volume, and APOE ε4
genotype.

Primary analyses showed statistically and practically significant

negative associations between baseline aLEC thickness and progres-

sion of cognitive performance over time (Model 1). We also observed

statistically and practically significant associations between change in

aLEC thickness and cognitive performance through time (Model 2).

Cross-sectional and longitudinal correlations between aLEC thickness

and cognitive performancewere present for bothMCI andAD cohorts.

We also tested whether trajectories of EC subregional CT through

timedifferentiate by clinical diagnostic grouping (Model 3). aLEC thick-

ness maintained complete separation between 95% confidence bands

among healthy, MCI, and AD cohorts while pMEC thickness did not.

Results indicate that the EC subregions could be differentially

affected during early stages of AD. This is consistent with histopatho-

logical studies, which have reported that neurofibrillary tangles and

neuropil threads show a distribution pattern that allow for staging.3

Initial stages show alterations confined to the transentorhinal region,

which includes the aLEC. These results contribute to growing evidence

that the aLEC is selectively vulnerable during earlyADandalso demon-

strate that aLECCT and changes in thickness over time are sensitive to

cognitive changes and serve as a viable biomarker for prodromal AD.

In a secondary analysis, we analyzed the relationship between

subregional CT and CSF measures of amyloid and tau pathology.

Clinical symptoms of AD are preceded by a long preclinical phase

in which pathological protein aggregation occurs in the brain.6,44
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F IGURE 3 Subregion cortical thickness (CT) progressions through time as estimated usingModel 3 along with 95% confidence bands. Model 3
accounts for individual variations as well as confounding variables. A–B,When viewed through anterolateral entorhinal cortex (aLEC) CT, the
diagnostic cohorts exhibit statistically significant separation that persists through the entire time ofmeasurement. Such separation is not apparent
in posteromedial entorhinal cortex (pMEC) CT. C–D, Secondary analysis on subset of Alzhiemer’s Disease Neuroimaging Initiative (ADNI-1) cohort
comparing progressions for amyloid ratio-positive (p-tau/Aß>0.1) and ratio-negative cohorts shows qualitatively different behavior between
aLEC and pMECCT, suggesting a possible role for cerebrospinal fluid amyloid ratio in influencing aLEC but not pMECCT trajectory

Additionally, Aβ plaques develop ∼15 to 20 years before onset of

cognitive impairment and neurofibrillary tangles begin to accumulate

at least 5 years before symptom onset.44 Previous studies have shown

low CSF levels of Aβ strongly correlate with increased plaque load in

the brain, and that high concentrations of CSF p-tau correlate with

AD-specific neurofibrillary pathology.45,46 Furthermore, ptau181–

Aβ42 ratio (ptau181/Aβ42) has been shown to be a strong predictor of

conversion from cognitively normal to MCI over an approximately 3-

to 4-year period.36-38

We found statistically and practically significant linear associations

between the binarized ratio p-tau/Aβ>0.1 and aLECCT and estimated

that there are similar differences in aLEC CT levels comparing the

p-tau/Aβ ratio-positive sample to the ratio-negative sample as for

the comparison between the MCI cohort and the healthy cohort.

Furthermore, the p-tau/Aβ ratio-positive sample exhibits a statistically

and practically significant change in aLEC thickness over time, requir-

ing an estimated 4 years to span the gap between healthy and MCI

cohorts. This secondary analysis suggests the presence of AD-specific

neuropathology may mediate thinning of the aLEC over time, but

results require further investigation.

Overall, these results suggest that aLECCT is a sensitivemeasure to

cognitive decline as well as to AD pathological stage. Considering the

growing interest in surrogate biomarkers that are sensitive and spe-

cific to AD especially during the early stages, we suggest that aLEC
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F IGURE 4 Receiver operating characteristic (ROC) curves for the prediction of mild cognitive impairment (MCI) status and AD status using
anterolateral EC (ALEC) and posteromedial entorhinal (pMEC) cortical thicknesses (CT). A, In predictingMCI status, the aLEC curve dominates the
respective pMEC curve and exhibits a larger area under the curve (area under these curves [AUC] 0.69 vs 0.62; with 95% confidence interval [CI;
0.066, 0.080] for difference). B, In predicting AD status, the aLEC curve also dominates the respective pMEC curve and exhibits a larger AUC (0.73
vs 0.67; with 95%CI [0.050, 0.064] for difference)

thinning may be an early marker that may be associated with cogni-

tive decline especially in thememory domain andmay serve as amech-

anistic link between pathological load and cognitive outcomes. Addi-

tional research should focus on further understanding the function of

aLEC and structural trajectories with aging and disease. For example,

the human aLEC appears is involved in tasks ranging from visual object

pattern separation7,9 to intra-item configural processing47 to tempo-

ral precision in real-world stimuli.48 Developing tasks that are specific

and sensitive to aLEC (dys)function could serve as an early predictor of

cognitive decline. In the future, these tasks can provide measures that

can be used as neurobiologically validated outcomes for clinical trials

in preclinical AD.
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